
Model-driven Monitoring:
Generating Assertions from Visual Contracts

Marc Lohmann, Gregor Engels
University of Paderborn

Department of Computer Science
Warburger Str. 100, 33098 Paderborn, Germany

engels, mlohmann@uni-paderborn.de

Stefan Sauer
Software Quality Lab (s-lab)

University of Paderborn
Warburger Str. 100, 33098 Paderborn, Germany

sauer@s-lab.upb.de

Abstract

The Visual Contract Workbench is a tool that supports
model-driven development of software systems by lifting the
Design by Contract idea, which is usually used at the code
level, to the model level. It uses visual contracts for graph-
ically specifying the pre- and post-conditions of an opera-
tion. Java classes with JML (Java Modeling Language) as-
sertions are generated from visual contracts to facilitate au-
tomatic monitoring of the correctness of the programmers’
implementation.

1 Introduction

Design by Contract (DbC) [4] is a powerful technique for
creating reliable software. The basic idea of DbC is that the
relationship between a class and its clients is specified by a
contract, a kind of formal agreement expressing each party’s
rights and obligations. The client must guarantee certain
conditions before calling an operation (pre-condition), and
in return the class guarantees certain properties that will
hold after the operation’s execution (post-condition).

Regularly, contracts are specified in an extension of the
programming language for logic formulae and embedded in
the program code. They are translated by a compiler into
executable code. This code checks the fulfillment of the
pre- and post-conditions when a client calls an operation.
Any violation of a contract can so be detected while the
program is executed. Thus, it is possible to monitor whether
a program behaves correct according to its specification.

However, describing a specification by using the pro-
gramming language itself is not adequate in today’s model-
driven software development processes. We propose to use
pairs of UML composite structure diagrams for specifying
the pre- and post-condition of an operation. Each pair con-
stitutes a visual contract. Additionally, we have defined a

transformation of our visual contracts into JML (Java Mod-
eling Language) assertions [3]. JML [2] extends Java with
DbC concepts. The generated JML assertions can be used
to monitor whether the manually coded program behaves
according to its specification by visual contracts. Thus, we
enablemodel-driven monitoring.

In this paper, we present how a new tool, calledVisual
Contract Workbench, can be used to embed our approach in
a model-driven software development process.

2 Model-driven Monitoring Approach

Our approach lends itself to model-driven software de-
velopment processes. Visual contracts are interpreted as
models of behavior from which code for runtime assertion
checking can be generated. The visual contracts also spec-
ify the behavior which has to be implemented by program-
mers. We exemplify how to enable model-driven monitor-
ing in a software development process by using the Visual
Contract Workbench.

In the first step, a software designer uses the Visual Con-
tract Workbench to build a design model of the system. This
model consists of a class diagram which is complemented
by visual contracts. The class diagram describes the static
aspects of the system. Each visual contract specifies the
behavior of an operation. The behavior of the operation
is given in terms of data state changes by pre- and post-
conditions, which are modeled by pairs of composite struc-
ture diagrams (Fig. 2). Both the pre- and post-condition of
a visual contract are typed over the design class diagram.

In the next step, the workbench can be used to generate
Java code from the design model. This generation process
consists of two parts. First, we generate Java class skeletons
from the design class diagram. Second, we generate JML
assertions from every visual contract and annotate the cor-
responding operations with their JML contracts. The JML
assertions allow us to validate the consistency of models



Design Model

Class Diagram Visual Contracts

Implementation

Java Class 
Skeletons JML

software designer

programmer C
om

pile w
ith 

JM
L C

om
piler

transform

transform

completes

designs

Executable binary code with run-time tests for contracts

Figure 1. Overview of the Visual DbC method-
ology

1
+CartItem

0..*

cartCreate() : Cart
cartAdd(in cid : String, in prNo : String, in quant : Integer) : String

«control»
Shop

cartId1

* controls

«key» cartId : string

«entity»
Cart

«key» cartItemId : String
productNo : String
quantity : Integer

«entity»
CartItem

«key» productNo : String

«entity»
Product

productNo1

*
controls

+cartItem

0..*

+product 0..1

«control»
self : Shop

«control»
self : Shop

«key» cartId = cid

«entity»
/c : Cart

«key» cartId = cid

«entity»
/c : Cart

«key» cartItemId = cartitemid
productNo = prNo
quantity = quant

«entity»
/citem : CartItem

«key» productNo = prNo

«entity»
/pr : Product

«key» productNo = prNo

«entity»
/pr : Product

vc cartAdd(cid, prNo, quant):cartitemid

«entity»
/c : Cart

«control»
self : Shop

«control»
self : Shop

vc cartCreate():c

Figure 2. Example of a visual contract

with manually derived code. The execution of such checks
is transparent in that, unless an assertion is violated, the be-
havior of the original program remains unchanged.

Then, a programmer uses the generated Java fragments
to fill in the missing behavioral code in order to build a com-
plete, functional application. Her programming tasks em-
anate from the design model of the system. Particularly, she
will use the visual contracts as reference for implementing
the behavior of operations. She has to code the method bod-
ies, and may add new operations to existing classes or even
completely new classes, but she is not allowed to change the
JML contracts. The latter guarantees that the JML contracts
remain consistent with the visual contracts.

Our approach builds upon a loose semantic interpreta-
tion of visual contracts [1]. They are interpreted as a min-
imal description of the data state transformation which has
to be implemented by the programmer. Thus, a visual con-
tract specifies only what at least has to happen on a system’s
state, but it allows the programmer to implement additional
effects. This loose interpretation is necessary both to give
the programmer the opportunity for optimizing her code,

e.g. by adding new classes or methods, and to generate as-
sertions from partial, incomplete models.

When a programmer has implemented the behavioral
code, she can start the JML compiler from the workbench
to build executable binary code. This binary code consists
of the programmer’s behavioral code and additional exe-
cutable runtime checks which are generated by the JML
compiler from the JML assertions. The runtime checks
monitor the pre- and post-conditions during the execution
of the system. They monitor whether the manually coded
behavior of an operation fulfills its JML specification. Thus,
we indirectly check whether the behavioral code complies
with the visual contract specification of the design model
since the JML assertions are purely generated from the vi-
sual contracts. That means, we support a model-driven
monitoring of implementations by transforming our visual
contracts into JML contracts.

3 Conclusions

We have developed a model-driven monitoring method-
ology. Visual contracts are introduced as a technique for
specifying the pre- and post-conditions of an operation by
pairs of UML composite structure diagrams. By using the
UML, we build on a well-known standard that is predomi-
nantly used in today’s model-based development methods.
Our methodology also supports generation of code by a
translation of visual contracts into the Java Modeling Lan-
guage, a Design by Contract extension for Java.

For an efficient deployment of our methodology, we pro-
vide a Visual Contract Workbench. This Eclipse plug-in
allows developers to coherently model class diagrams and
visual contracts. The workbench is complemented by code
generation facilities for Java classes with assertions for their
operations.

Our methodology is currently considered by a industrial
partner software company of the s-lab for deployment in
their software development projects.

References

[1] G. Engels, M. Lohmann, S. Sauer, and R. Heckel. Model-
driven monitoring: An application of graph transformation
for design by contract. InInternational Conference on Graph
Transformation ICGT 2006, September 2006.

[2] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary de-
sign of JML: A behavioral interface specification language
for Java. Technical Report 98-06-rev27, Department of Com-
puter Science, Iowa State University, February 2005.

[3] M. Lohmann, S. Sauer, and G. Engels. Executable visual con-
tracts. In2005 IEEE Symposium on Visual Languages and
Human-Centric Computing, pages 63–70, 2005.

[4] B. Meyer. Applying “Design by Contract”.IEEE Computer,
25(10):40–51, 1992.


